Two proofs that $(A \Rightarrow B)$ if and only if $(\neg B \Rightarrow \neg A)$

Direct proof

We can construct a "truth table" that maps the situation for all possible values of **A** and **B**:

The values in the column of $A \Rightarrow B$ and $\neg B \Rightarrow \neg A$ are the same, so they are equivalent: that is an *if and only if*.

Proof by contradiction (reductio ad absurdum)

We suppose that the hypothesis is true but the thesis is false, we reach a contradiction.

We first suppose that

 $(A \Rightarrow B)$ is true but $(\neg B \Rightarrow \neg A)$ is not true

If this were so, then we could have

 $(A \Rightarrow B)$ true

 $\neg B$ true and $\neg A$ false (because ($\neg B \Rightarrow \neg A$) is not true)

That is, we could have

 $(A \Rightarrow B)$ true

−B true

A true (because we supposed -A false)

But then

A true and $(A \Rightarrow B)$ true imply that B is true

while we also supposed that -B true

This leads to a contradiction: both **B** and \neg **B** should be true.

Therefore we must have that

If $(A \Rightarrow B)$ then $(\neg B \Rightarrow \neg A)$

The vice versa, that is

If $(\neg B \Rightarrow \neg A)$ then $(A \Rightarrow B)$ is proven in the same way: just

substitute A for -B and

substitute **B** for **-A**.

After all, **A**'s and **B**'s are just placeholders - meaningless marks on paper...