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The problem 2-NASH of finding a Nash equilibrium of a bimatrix game belongs to the
complexity class PPAD. This class comprises computational problems that are known to
have a solution by means of a path-following argument. For bimatrix games, this argument
is provided by the Lemke–Howson algorithm. It has been shown that this algorithm is
worst-case exponential with the help of dual cyclic polytopes, where the algorithm can be
expressed combinatorially via labeled bitstrings defined by the “Gale evenness condition”
that characterize the vertices of these polytopes. We define the combinatorial problem AN-
OTHER COMPLETELY LABELEDGALE STRING whose solutions define the Nash equilibria
of games defined by cyclic polytopes, including games where the Lemke–Howson algo-
rithm takes exponential time. If this problem was PPAD-complete, this would imply that
2-NASH is PPAD-complete, in a much simpler way than the currently known proofs, in-
cluding the original proof by Chen and Deng [3]. However, we show that ANOTHER COM-
PLETELY LABELED GALE STRING is solvable in polynomial time by a simple reduction to
PERFECT MATCHING in graphs, making it unlikely to be PPAD-complete. Although this
result is negative, we hope that it stimulates research into combinatorially defined problems
that are PPAD-complete and imply this property for 2-NASH.
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1 Labeled Gale strings

Let [k] = {1, . . . ,k} for any positive integerk. If S is a set, we often consider a
function s : [k] → S as a strings(1)s(2) · · ·s(k) of k elements ofS. For s : [k] → S
and a subsetA of [k], let s(A) be the set{s(i) | i ∈ [k]}. If S = {0,1}, we calls a
string ofbits. A bit strings : [k]→{0,1} can be considered as an indicator function
of a subset of[k] that we denote by 1(s), that is,

1(s) = s−1(1) = { j ∈ [k] | s( j) = 1}.

Definition 1.1 G(d,n) is the set of all stringss of n bits so that exactlyd bits in s
are 1 and so thats fulfills the Gale evenness condition, that is, whenever 01k0 is a
substring ofs, thenk is even. An element of ofG(d,n) is also called aGale string
of dimension d (and lengthn).

For example,G(4,6) consists of the nine strings 111100, 111001, 110110,
110011, 101101, 100111, 011110, 011011, 001111.

For a bit strings, a maximal substring ofs of consecutive 1’s is called arun.
A Gale string may only have interior runs (bounded on both sides by a 0) of even
length but may start or end with an odd(-length) run. Ifd is even, then anys in
G(d,n) that starts with an odd run also ends with an odd run, and thesetwo odd
runs may be “glued together” to form an even run. This shows that the set of
Gale strings of even dimension is invariant under a cyclic shift of the strings. We
normally assume thatd is even.

Given a setG of bit strings of lengthn and a parameterd, a labeling is a func-
tion l : [n] → [d]. Given a labeling, a strings in G is calledcompletely labeled if
l(1(s)) = [d], that is, if every label in[d] appears asl(i) for at least one bits(i) so
thats(i) = 1. Clearly, ifs is completely labeled, thens has at leastd bits that are 1,
and if exactlyd bits in s are 1, then every label in[d] occurs exactly once.

We consider the following decision problem.
COMPLETELY LABELED GALE STRING

Input : A labelingl : [n] → [d], whered is even andd < n.
Question: Is there a Gale strings in G(d,n) that iscompletely labeled?

For example, for the string of labelsl = 1123143 (withd = 4) the completely
labeled Gale strings are 0110011 and 0011110. Forl = 123432 they are 111100,
110110, 100111, and 101101. Forl = 121314, there are no completely labeled
Gale strings.

The setG(d,n) of Gale strings has a combinatorial structure that allows the use
of a “parity argument”, which we consider in detail later, toshow the following
known property; it holds for oddd as well but we assume throughout thatd is even.



Theorem 1.2 For any labeling l : [n]→ [d], where d is even and d < n, the number
of completely labeled Gale strings in G(d,n) is even.

Theorem1.2implies that if there is one completely labeled Gale string,there is
also a second one. The following function problem asks to compute a completely
labeled Gale string if one such string is already given.
ANOTHER COMPLETELY LABELEDGALE STRING

Input : A labeling l : [n] → [d], whered is even andd < n, and a completely
labeled Gale strings in G(d,n).

Output : A completely labeled Gale strings′ in G(d,n) wheres′ 6= s.
The main result of this paper is that both problems, COMPLETELY LABELED

GALE STRING and ANOTHER COMPLETELY LABELED GALE STRING, can be
solved in polynomial time. The proof uses a reduction to the following problem,
which was first shown to be solvable in polynomial time by Edmonds [5].
PERFECTMATCHING

Input : GraphG = (V,E).
Question: Is there a setM ⊆ E of pairwise non-adjacent edges so that every vertex

v ∈V is incident to exactly one edge inM?

Theorem 1.3 The problems COMPLETELY LABELED GALE STRING and ALMOST

COMPLETELY LABELED GALE STRING can be solved in polynomial time.

Proof. We give a rather simple reduction to PERFECTMATCHING. Given the la-
belingl : [n] → [d], construct the (multi-)graphG with vertex setV = [d] and up to
n (possibly parallel) edges with endpointsl(i), l(i + 1) for i ∈ [n] whenever these
endpoints are distinct (soG has no loops); here we letn + 1 = 1 (“modulon”) so
thatn,n+1 is to be understood asn,1. Then a completely labeled Gale strings in
G(d,n) splits into a number of runs which are uniquely split intod/2 pairsi, i +1
so that the labelsl(i) andl(i + 1) are distinct, and all labels 1, . . . ,n occur among
them. So this defines a perfect matching forG.

Conversely, a perfect matchingM of G defines a Gale strings wheres(i) =
s(i+1) = 1 if the edge that joinsl(i) andl(i+1) is in M ands(i) = 0 otherwise, so
s is completely labeled. This shows how COMPLETELY LABELED GALE STRING

reduces to PERFECTMATCHING. Finding a perfect matching, or deciding thatG
has none, can be done in polynomial time [5].

The reduction for ANOTHER COMPLETELY LABELEDGALE STRING is an ex-
tension of this. Consider the given completely labeled Gale string s and the match-
ing M for it. If G has multiple edges between two nodes and one of them is inM,
simply replace that edge by a parallel edge to obtain anothercompletely labeled
Gale strings′. Hence, we can assume thatM has no edges that have a parallel edge.



Another completely labeled Gale strings′ exists by Theorem1.2. The correspond-
ing matchingM′ does not use at least one edge inM. Hence, at least one of the
d/2 graphsG which have one of the edges ofM removed has a perfect matching
M′, which is a perfect matching ofG, and which defines a completely labeled Gale
strings′ different froms. The search forM′ takes again polynomial time.

The significance of Theorem1.3 is to be understood in the context of equilib-
rium computation for games, which we discuss next. The remainder of this paper
contains only known results.

2 Labeled polytopes and equilibria in games

For a matrixA its transpose isA⊤. We treat vectorsu,v in R
d as column vectors, so

u⊤v is their scalar product. By0 we denote a vector of all 0’s, of suitable dimension,
by 1 a vector of all 1’s. A unit vector, which has a 1 in itsith component and 0
otherwise, is denoted byei. Inequalities likeu ≥ 0 hold for all components. For a
set of pointsS we denote its convex hull by convS.

A (d-dimensional)simplicial polytope P is the convex hull of a set of at least
d +1 pointsv in R

d in general position, that is, nod +1 of them are on a common
hyperplane. Ifv cannot be omitted from these points without changingP thenv is
called avertex of P. A facet of P is the convex hull convF of a setF of d vertices
of P that lie on a hyperplane{x ∈ R

d | a⊤x = a0} so thata⊤u < a0 for all other
verticesu of P; if a0 > 0 we choosea0 = 1 and calla the normal vector of the
facet. We often identify the facet with its set of verticesF .

A cyclic polytope P in dimensiond with n vertices is the convex hull ofn
pointsµ(t j) on themoment curve µ : t 7→ (t, t2, . . . , td)⊤ for j ∈ [n]. Suppose that
t1 < t2 < · · · < tn. Then the facets ofP are encoded byG(d,n), that is,

F is a facet ofP ⇐⇒ F = conv{µ(ti) | i ∈ 1(s)} for somes ∈ G(d,n),

as shown by Gale [7]. For this cyclic polytopeP, a labelingl : [n] → [d] can be
understood as a labell( j) for each vertexµ(t j) for j ∈ [n]. A completely labeled
Gale strings therefore represents a facetF of P that is completely labeled.

The following theorem, due to Balthasar and von Stengel [1,2], establishes a
connection between general labeled polytopes and equilibria of certaind×n bima-
trix games(U,B).

Theorem 2.1 Consider a labeled d-dimensional simplicial polytope Q with 0 in
its interior, with vertices −e1, . . . ,−ed,c1, . . . ,cn, so that F0 = conv{−e1, . . . ,−ed}
is a facet of Q. Let −ei have label i for i ∈ [d], and let c j have label l( j) ∈ [d]



for j ∈ [n]. Let (U,B) be the d × n bimatrix game with U = [el(1) · · · el(n)] and
B = [b1 · · · bn], where b j = c j/(1+1⊤c j) for j ∈ [n]. Then the completely labeled
facets F of Q, with the exception of F0, are in one-to-one correspondence to the
Nash equilibria (x,y) of the game (U,B) as follows: if v is the normal vector of F,
then x = (v +1)/1⊤(v +1), and xi = 0 if and only if −ei ∈ F for i ∈ [d]; any j so
that c j is a vertex of F represents a pure best reply to x. The mixed strategy y is the
uniform distribution on the set of pure best replies to x.

In the preceding theorem, any simplicial polytope can take the role ofQ as long
as it has one completely labeled facetF0. Then an affine transformation, which
does not change the incidences of the facets ofQ, can be used to mapF0 to the
negative unit vectors−e1, . . . ,−ed as described, withQ if necessary expanded in
the direction1 so that0 is in its interior.

A d×n bimatrix game(U,B) is aunit vector game if all columns ofU are unit
vectors. For such a gameB with B = [b1 · · ·bn], the columnsb j for j ∈ [n] can be
obtained fromc j as in Theorem2.1if b j > 0 and1⊤b j < 1. This is always possible
via a positive-affine transformation of the payoffs inB, which does not change the
game. The unit vectorsel( j) that constitute the columns ofU define the labelsl( j)
of the verticesc j. The corresponding polytope with these vertices is simplicial if
the game(U,B) is nondegenerate [15], which here means that no mixed strategyx
of the row player has more than|{i ∈ [d] | xi > 0}| pure best replies. Any game can
be made nondegenerate by a suitable “lexicographic” perturbation ofB, which can
be implemented symbolically.

Unit vector games encode arbitrary bimatrix games: Anm× n bimatrix game
(A,B) with (w.l.o.g.) positive payoff matricesA,B can be symmetrized so that its
Nash equilibria are in one-to-correspondence to the symmetric equilibria of the
(m+n)× (m+n) symmetric game(C⊤,C) where

C =

(

0 B

A⊤ 0

)

.

In turn, as shown by McLennan and Tourky [10], the symmetric equilibria(x,x)
of any symmetric game(C⊤,C) are in one-to-one correspondence to the Nash
equilibria (x,y) of the “imitation game”(I,C) whereI is the identity matrix; the
mixed strategyy of the second player is simply the uniform distribution on the set
{i | xi > 0}. Clearly,I is a matrix of unit vectors, so(I,C) is a special unit vector
game.

Special games are obtained by using cyclic polytopes in Theorem 2.1, suit-
ably affinely transformed with a completely labeled facetF0. WhenQ is a cyclic



polytope in dimensiond with d + n vertices, then the string of labelsl(1) · · · l(n)
in Theorem2.1 defines a labelingl′ : [d + n] → [d] wherel′(i) = i for i ∈ [d] and
l′(d + j) = l( j) for j ∈ [n]. In other words, the string of labelsl(1) · · · l(n) is just
prefixed with the string 12· · ·d to give l′. Thenl′ has a trivial completely labeled
Gale string 1d0n which defines the facetF0. Then the problem ANOTHER COM-
PLETELY LABELED GALE STRING defines exactly the problem of finding a Nash
equilibrium of the unit vector game(I,B). Note again thatB is here not a general
matrix (which would define a general game) but obtained from the lastn of d + n
vertices of a cyclic polytope in dimensiond.

3 Lemke–Howson and PPAD

The algorithm due to Lemke and Howson [9], here called the LH algorithm, finds
one Nash equilibrium of a bimatrix game. It can be translatedto labeled simplicial
polytopes as follows. Start with a completely labeled facet(such asF0 above). Se-
lect one labeli that is allowed to be missing (or “dropped”) and move fromF0 to
the unique adjacent facet that shares all vertices withF0 except the one with labeli.
This is computationally implemented as apivoting step as in the simplex algorithm,
which is a local transformation of the current normal vectorconsidering the other
vertices not on the current facet. The newly obtained facetF1, say, has a new vertex
with a labelj; if j = i, thenF1 is completely labeled and the algorithm stops. Other-
wise, take the vertexv of F1 that had labelj so far and move to the unique adjacent
facetF2 that has all vertices ofF1 exceptv, and continue as before. This defines a
unique “path” of facets that must eventually terminate at a completely labeled facet
different fromF0. Applied to cyclic polytopes, this proves Theorem1.2.

The result of Morris [11] implies that for suitably labeled cyclic polytopes in
dimensiond with 2d vertices, the described path can be exponentially long, for
any initially dropped label. His labelingl for d = 6 is given by the string of la-
bels 123456645321, ford = 8 it is 1234567886745231, which shows the general
pattern. With the help of imitation games [10], this defines exponentially long LH
paths for bimatrix games. Savani and von Stengel [13] obtained this result differ-
ently by considering payoff matrices that for both players are defined via cyclic
polytopes, rather than a matrix of unit vectors for the row player as in Theorem2.1.

The problemn-NASH of computing Nash equilibrium of ann-player game be-
longs to the complexity class PPAD [12]. It comprises function problems that are
known to have a solution via a “polynomial parity argument with direction”. For 2-
NASH, this argument is provided by the LH algorithm. Formally, PPAD consists of
problems that reduce to the problem END OF THE L INE, given by two polynomial-
sized Boolean circuitsσ andπ with k input andk output bits. This pairσ ,π defines



an implicit digraph withk-bit strings as vertices and arcs(u,v) wheneverσ(u) = v
andπ(v) = u. If σ(π(u)) 6= u thenu is a source and ifπ(σ(v)) 6= v thenv is a sink
of this digraph. It is assumed that 0k is a source. The sought output is any sink, or
source other than 0k. It exists because the digraph is a collection of directed paths
and cycles, with at least one path which starts at 0k.

Daskalakis, Goldberg and Papadimitriou [4] and Chen and Deng [3], respec-
tively, have shown that 3-NASH and 2-NASH are PPAD-complete. As indicated in
Section2, the PPAD-completeness of 2-NASH due to [3] shows that the following
problem is PPAD-complete: Given a labeled polytopeQ as in Theorem2.1with a
completely labeled facetF0, find another completely labeled facet. (If the games
in [3] are degenerate thenQ is not simplicial; this can be treated by a suitable
extension of the LH algorithm.)

The orientation of the path (the “D” in PPAD) can be proved by asuitable
orientation of the facets of the polytope, via the determinant of theird vertices in
the order of the labels [8,14].

For the special cyclic polytopes, the LH algorithm can be described very simply
in terms of the Gale evenness strings, see [13]. The orientation can also be defined
simpler via signs of permutations rather than of determinants, which we omit for
reasons of space.

Another abstraction of the LH algorithm is provided by Eulercomplexes or
“oiks” introduced by Edmonds [6]. A special case are abstract manifolds, defined
by a family ofd-element sets calledrooms so that anywall, obtained by removing
one vertex from a room, is the wall of exactly one other room. Given a labeling
(called coloring in [6]) of the vertices, any manifold has an even number of com-
pletely labeled rooms, in analogy to Theorem1.2. If the manifold is orientable,
the orientation argument of Lemke and Grotzinger [8] applies; in particular, the
endpoints of the LH paths are rooms of opposite orientation.

What is important in our context is that the manifold is not defined as an explicit
list of rooms but implicitly with rooms as facets of a simplicial polytope, given by
its vertices. For the cyclic polytope withn vertices in dimensiond, the rooms are
even more simply specified as the sets 1(s) for s ∈ G(d,n).

Our Theorem1.3 shows: even though cyclic polytopes may give rise to expo-
nentially long LH paths, the respective computational problem of finding another
completely labeled facet is solvable in polynomial time. Hence, Gale evenness
strings are most likely too simple to define a PPAD-complete problem.
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